
Lecture nineteen: Fitting and comparing the
AFT Models

1. Log-linear form of the AFT model (cont.)

The log transformation of survival times is used by default in the SAS
PROC LIFEREG, namely

log Ti = µ+ α1x1i + . . .+ αpxpi + σǫi.

Thus, the output is in terms of parameterization of µ, α and σ.

(a) For Weibull distribution, the relation between two sets of param-
eters (PH and AFT) is (page 179 and 199)

λ = exp(−µ/σ), γ = σ−1, βj = −αj/σ,

(b) For log-logistic distribution (θ, κ and µ, σ)

Assume ǫ has logistic(θ = 0, κ = 1) distribution with density
f(ǫ) = eǫ

(1+eǫ)2
, and S(ǫ) = 1

1+eǫ
, then the survival function under

log-linear model is

Si(t) = P (Ti ≥ t)

= P (log Ti ≥ logt)

= P (ǫi ≥
log t− µ− α1x1i − . . .− αpxpi

σ
)

= [1 + exp{
log t− µ− α1x1i − . . .− αpxpi

σ
}]−1

Under another parameterization and AFT model,

Si(t) =
1

1 + eθ−κηitκ

where ηi = α1x1i + . . .+ αpxpi. Thus,

θ = −µ/σ, κ = σ−1.

(c) We can get the relations in similar derivation for other distribu-
tions (see also Table 6.2, and Table 6.3 in the 3rd edition).



(d) In order to interpret the parameter estimates, it is important to
know how the model is parameterized.

2. Fitting the AFT models

(a) The likelihood approach (see section 5.13 for details)

L(α, µ, σ) =
n∏

i=1

f δi
i (ti)S

1−δi
i (ti)

(b) Checking the AFT assumption

i. AFT is a very strong assumption: S1(t) = S0(t/φ).

ii. If a covariate is categorical

A. plotting survival cures (KM estimates) for each stratum:
1) no crossing, 2) departing farther with time before con-
verging.

B. without censoring (or small portion of censoring): QQ-
plot of one sample versus another - straight line.

C. With censoring: PP-plot based on the percentiles of KM
estimate of survival (see the example in lecture notes 18).

iii. If covariate is continuous:

A. plot residuals vs fitted value

B. plot residuals vs each covariates

iv. Residuals (Cox-Snell, martingale) can be defined from the fit-
ted survival function, but they are not in the PROC lifereg
output (SAS).

Deviance residuals are available in output of Splus function
survreg() and censorReg().

3. Example 5.14: Prognosis for women with breast cancer

(a) Under Weibull (PH and AFT):

Model Information

Dependent Variable Log(SURVT)

Name of Distribution WEIBULL

Log Likelihood -60.88396152



Analysis of Parameter Estimates

Standard

Variable DF Estimate Error Chi-Square Pr > ChiSq Label

Intercept 1 5.85436 0.49888 137.7124 <.0001 Intercept

GROUP 1 -0.99666 0.54409 3.3555 0.0670

Scale 1 1.06678 0.17855 Extreme value scale

Notice that λ = exp(−µ/σ), γ = σ−1, βj = −αj/σ (page
238 under PH assumption). We have

λ̂ = exp(−5.85/1.06678) = 0.00415
γ̂ = 1.06678−1 = 0.937
β̂ = 0.99666/1.06678 = 0.934

The estimated hazard ratio under PH model is: eβ̂ = e0.934 = 2.55
The estimated median survival time (Use expression (5.69)): 236
days (HPA-) and 87 days (HPA+)
The estimated acceleration factor: e−α̂ = 2.71

(b) Under log-logistic:

Model information

Dependent Variable Log(SURVT)

Name of Distribution LLOGISTC

Log Likelihood -59.24726035

********************************************************************

Analysis of Parameter Estimates

Standard

Variable DF Estimate Error Chi-Square Pr > ChiSq Label

Intercept 1 5.46110 0.46037 140.7193 <.0001 Intercept

GROUP 1 -1.14906 0.52022 4.8787 0.0272

Scale 1 0.80470 0.13298 Logistic scale

Notice that θ = −µ/σ, κ = σ−1. We have



θ̂ = −5.46/0.805 = −6.783
κ̂ = 0.805−1 = 1.242
α̂ = −1.149
The estimated acceleration factor is e−α̂ = 3.16
The estimated median survival time (see expression (5.72)): 235
days (HPA-) and 75 days (HPA+).

(c) Figures:

Figure 1:

survival time
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AFT: Weibull distribution
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AFT: Log logistic distribution

(d) Which one to choose? (Check residuals)



(e) SAS program:

options pagesize=60 linesize=79 nodate nonumber;

libname fu ’../../sdata’;

data work;

set fu.hpa;

proc lifereg;

model survt*censor(0) = group/distribution = weibull;

proc lifereg;

model survt*censor(0) = group/distribution = llogistic;

run;

4. Example 5.15: Prostatic cancer study

(a) SAS program: available at the course website.

(b) The parsimonious model

Table 1: Values of −2log L̂ for models excluding treatment

Terms in model −2log L̂
null model 35.806
AGE 35.752
SHB 35.700
SIZE 27.754
INDEX 27.965
AGE+SHB 35.657
AGE+SIZE 27.652
AGE+INDEX 27.859
SHB+SIZE 27.722
SHB+INDEX 26.873
SIZE+INDEX 23.112
AGE+SHB+SIZE 27.631
AGE+SHB+INDEX 26.870
AGE+SIZE+INDEX 23.002
SHB+SIZE+INDEX 22.895
AGE+SHB+SIZE+INDEX 22.727



Analysis of Parameter Estimates

Standard

Variable DF Estimate Error Chi-Square Pr > ChiSq Label

Intercept 1 7.08815 1.63311 18.8380 <.0001 Intercept

SIZE 1 -0.02893 0.01864 2.4086 0.1207

INDEX 1 -0.29272 0.15110 3.7528 0.0527

TREAT 1 0.57266 0.47254 1.4686 0.2256

Scale 1 0.33831 0.11750 Logistic scale

The fitted hazard function from the final model is

ĥi(t) = e−η̂i ĥ0(e
−η̂it),

where

η̂i = −0.029SIZEi − 0.293INDEXi + 0.573TREATi

(c) Interpretation of treatment effect Controling other factors, the
estimated ‘relative’ acceleration factor is e−0.573 = 0.56, the effect
of the treatment with DES is to slow down the progression of the
cancer by a factor of about 2.

5. The proportional odds model

(a) The model

Si(t)

1− Si(t)
= eηi

S0(t)

1− S0(t)
,

where

ηi = β1x1i + . . .+ βpxpi

(b) The covariates act multiplicatively on the odds of survival beyond
t.

(c) The log-odd ratio is simply β if consider treatment only.

(d) The hazard ratio hi(t)/h0(t) converges unity when t tends to in-
finity.



(e) It makes sense in practical applications: The difference of treat-
ment effect wears off over time.

(f) 1) Software is not generally available; 2) give similar results to
Cox model that include a time-dependent covariate.

(g) The log-logistic proportional odds model

i. The proportional odds property: If assume survival time has
a log-logistical distribution, then

S0(t) = [1 + eθtκ]−1

and

S0(t)

1− S0(t)
= e−θt−κ.

Thus, for the ith individual under proportional odds model

Si(t)

1− Si(t)
= eηi−θt−κ.

Thus, the survival time of the ith individual has a log-logistic
distribution with parameters θ − ηi and κ.

ii. The log-logistic distribution is the only parametric distribu-
tion with both a proportional odds and an AFT representa-
tion (Klein and Moeschberger).

iii. The relationship between two sets of parameters:

Let the survival functions under AFT and proportional odds
equal, i.e.

[1 + eθ−κα′xitκ]−1 = [1 + eθ̃−β′xitκ̃]−1,

then we have κ̃ = κ, θ̃ = θ, and β = κα. Recall κ = σ−1.

iv. For other proportional odds models, see section 6.9; SAS/JMP?

v. EDA (exploratory Data Analysis): The log-odds is

log{
Si(t)

1− Si(t)
} = ηi − θ − κlog t,

vi. Example 5.17 (Breast cancer study): Plot - log-odds of sur-
vival vs log of survival time.



vii. The estimated value of β in the linear component of the pro-
portional odds model is β̂ = κ̂α̂ = −1.149 ∗ 1.243 = −1.428.
The corresponding odds ratio is exp(−1.428) = 0.24, so that
the odds of a woman with negatively stained tumor surviv-
ing beyond t are four times of that of women with positively
stained tumor.

viii. Example 5.17: SAS program

options pagesize=60 linesize=78 nodate nonumber;

libname fu ’../../sdata’;

data work;

set fu.hpa;

filename x ’loddshpa.pdf’;

goptions gsfname=x ROTATE=LANDSCAPE gsfmode=append device=pdf;

proc lifetest plots=(lls) method =km outsurv=tmp;

time survt*censor(0);

strata group;

data work1;

set tmp;

if survt = 0 or survival = 0 or survival = 1 then delete;

if _CENSOR_ = 1 then delete;

logodds = log(survival/(1-survival));

logt = log(survt);

proc reg;

model logodds = logt;

axis1 label=(h=1 f=swiss ’Log of survival time’) minor=(n=1);

axis2 label=(h=1 f=swiss a=90 ’log-odds of survival’) minor=(n=4);

symbol1 c=black i=join l=2 v=dot height=0.5;

symbol2 c=black i=join l=2 v=star height=0.5;

proc gplot;

plot logodds*logt = group/vaxis=axis2 haxis = axis1;

run;

Assignment ten: Using Weibull accelerated failure time model to fit the
data of bone marrow transplantation (Table B.4, page 503, also available on
the course website). Provide your program and output of it. Interpret your
results and calculate the acceleration factors for the significant prognostic
variables (i.e. those with p ≤ 0.05).
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