
Lecture seventeen: Common Distributions for
Survival Data

In additon to exponential, Weibull and Gompertz distributions mentioned
in chapter 5, there are other probability distributions for survival data, fol-
lowing is a summary of them. Notice that each one of the four quantities,
namely, density function f(t), survival function S(t), hazard function h(t)
and cumulative hazard function H(t), uniquely determines the underlying
distribution, hence the other three quantities.

1. Derivative, max, min, range, change rate

2. Common Distributions

(a) Exponential: Exp(λ):

f(t) = λexp(−λt), t ≥ 0

S(t) = exp(−λt), t ≥ 0

Constant hazard; linear cumulative hazard in time t.

Piece-wise exponential:

(b) Weibull: W (λ, γ):

f(t) = λγtγ−1exp(−λtγ), t ≥ 0

S(t) = exp(−λtγ), t ≥ 0

h(t) = λγtγ−1, t ≥ 0

i. γ < 1, decreasing hazard over time

ii. γ = 1, Exponential distribution: Exp(λ)

iii. γ > 1, increasing hazard over time

(c) Gamma: Gamma(λ, ρ) using scale and shape parameters

f(t) =
λρtρ−1e−λt

Γ(ρ)
, t ≥ 0



There are no closed form for S(t), h(t), for example,

h(t) =
λρtρ−1e−λt

Γ(ρ){1− Γλt(ρ)}
, t ≥ 0

where Γ(ρ) is a gamma function and Γλt(ρ) is the imcomplete
gamma function given by

Γλt(ρ) =
1

Γ(ρ)

∫ λt

0
uρ−1e−udu,

which is the cumulative distribution function.

i. when ρ < 1, hazard decreases

ii. when ρ = 1, exponential distribution: Exp(λ)

iii. when ρ > 1, hazard increases

iv. If Ti (i = 1, ..., k) are k independent random variables with
Gamma(λ, ρi) (i = 1, ..., k), then T =

∑k
i=1 Ti hasGamma(λ,

∑k
i=1 ρi).

(d) The log-logistic: log − logistic(θ, κ)

f(t) =
eθκtκ−1

(1 + eθtκ)2
, t ≥ 0

S(t) = [1 + eθtκ]−1, t ≥ 0

h(t) =
eθκtκ−1

1 + eθtκ
, t ≥ 0

i. κ < 1, hazard decreases from +∞
ii. κ = 1, hazard decreases from eθ to 0

iii. κ > 1, hazard increases from 0 to a maximum, and then
decreases to 0

log(T) has a logistic distribution, whose density function is similar
to that of normal distribution. The pth percentile is

t(p) = [pe−θ/(100− p)]1/k,



(e) Log-normal: log − normal(µ, σ2)

f(t) =
1

σ
√
(2π)

t−1exp{−(logt− µ)2/2σ2}, t ≥ 0

There are no closed form for S(t), h(t), hazard non-monotonic,
increasing from 0 to a maximum, and then decreasing to 0. For
example,

S(t) = 1− Φ(
log t− µ

σ
) =

∫ log t−µ

σ

−∞

1√
(2π)

exp{−u2/2}du,

The log-normal model will tend to be similar to log-logistic model;
the Weibull and Gamma distributions will generally lead to very
similar results.

(f) Gompertz distribution: Gompertz(β, γ)

f(t) = βeγtexp[
β

γ
(1− eγt)],

where β, γ > 0, t ≥ 0.

S(t) = exp[
β

γ
(1− eγt)],

what if γ < 0?(Cure rate, Ref.: Survival Analysis with Long-Term
Survivors, Maller; Zhou, 1996)

h(t) = βeγt,

(g) Mixture (Maller, Zhou, 1996) and non-mixture (Tsodikov et al:
JASA, 2003; 98: 1063-1078) cure models: See also section 5.16.

(h) General exponential curve or Mitscherlich curve with hazard has
following forms (Gompertz-Makeham law of mortality)

h(t) = θ − βe−γt, t ≥ 0

and

h(t) = θ + βe−γt,

where θ, β, γ > 0(or < 0?). There are other constraints on the
parameters.

The hazard of death is to increase or decrease with time in the
short term, and then become constant.



(i) Generalized gamma distribution and inverse Gaussian distribution
(page 155): Ref: The Inverse Gaussian Distribution, Seshadri,
1999, Spinger.

(j) the ‘bathtub’ hazard:

h(t) = αt+
β

1 + γt
,

which decreases to a single minimum and increases thereafter.

3. Choose a distribution: graphic tools

(a) Quantitle-Quantile Plot (QQ plot): without Censoring

i. Quantile/Percentile: tq is the qth percentile if P (T < tq) = q.

ii. If a theoritical distribution approximates data reasonably well.

A. Theoretical quantitles (from distribution) should be com-
parable with emperical quantile (based on data).

B. Plot of theoritical quantitles versus empirical quantile is
close to a straighline.

iii. If two samples of data follow the same distribution

A. Empirical quantiles of sampe 1 should be similar to the
empirical quantile of sample 2.

B. Plot of quantiles from sample 1 vs quantiles of sample 2
is roughly a straightline.

iv. Splus Implementation

A. qqnorm(y): normal quantiles vs quantiles of sample y.

B. qqplot(x,y): quantiles of sample x vs quantiles of sample
y, length(x) = length(y) is NOT required.

C. plot(qdist(ppoints(y)), sort(y)): quantiles of theoretical
‘dist’ vs quantiles of sample y.

D. ‘qdist’ can be one of ‘qexp’, ‘qgamma’, ‘qlogis’,‘qlnorm’,‘qunif’,
‘qweibull‘, and many more.

E. ‘ppoints’: a sample of probability points corresponding to
the sample y.

F. ‘sort’: re-arrange y based on ranking.



v. Using formal tests to compare a sample with a theoretical
distribution

A. Examples: Kolmogorov-Smirnov test, Chisq test, etc.

B. Warning: many common t-tests, Wilcoxon etc. are not
appropriate because they test only difference in mean/median,
not the distribution.

vi. censoring cannot be dealt with by ‘qqplot’ (how to rank cen-
sored observations?)

(b) Hazard and other plots

i. The estimates of hazard function mentioned in chapter 2 are
very unstable, which depend heavily on time interval between
two consecutive distinct failures/ time intervals chosen.

ii. plotting ĥ(tj) vs tj : unstable because of substantial fluctua-
tion. Instead, use cumulative hazard plot.

(c) Cumulative Hazard Plot

i. Estimating H(t) by using Ŝ(t) (e.g. KM).

ii. Appropriate scale to plotting H(t) vs t: determined by the
analytical behavior of a distribution.

A. Exponential: H(t) = λt, log(S(t)) linear in t.

B. Weibull: log(H(t)) = log(−logS(t)) linear in log t.

C. log-logistic: log{ S(t)
1−S(t)

} = −θ − κlog t. Illustration (Ex-

ample 6.1):

D. log-normal: Φ−1{1− S(t)} = log t−µ
σ

E. Not trivial for most of other distributions.

iii. Example 5.2: Time to discontinuation (IUD data)
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Hazard functions for a log-logistic distribution 
		with median of 20 and k = 0.5, 2.0 and 5.0

Median: t(50) = exp(-theta/k)
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’bathtub’ hazard function with alpha=0.09, beta=6, gamma = 1
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