Lecture seventeen: Common Distributions for Survival Data

In additon to exponential, Weibull and Gompertz distributions mentioned in chapter 5, there are other probability distributions for survival data, following is a summary of them. Notice that each one of the four quantities, namely, density function $f(t)$, survival function $S(t)$, hazard function $h(t)$ and cumulative hazard function $H(t)$, uniquely determines the underlying distribution, hence the other three quantities.

1. Derivative, max, min, range, change rate

2. Common Distributions

(a) Exponential: $Exp(\lambda)$:

$$
f(t) = \lambda \exp(-\lambda t), \qquad t \ge 0
$$

$$
S(t) = exp(-\lambda t), \qquad t \ge 0
$$

Constant hazard; linear cumulative hazard in time t.

Piece-wise exponential:

(b) Weibull:
$$
W(\lambda, \gamma)
$$
:

$$
f(t) = \lambda \gamma t^{\gamma - 1} exp(-\lambda t^{\gamma}), \qquad t \ge 0
$$

$$
S(t) = exp(-\lambda t^{\gamma}), \qquad t \ge 0
$$

$$
h(t) = \lambda \gamma t^{\gamma - 1}, \qquad t \ge 0
$$

- i. γ < 1, decreasing hazard over time
- ii. $\gamma = 1$, Exponential distribution: $Exp(\lambda)$
- iii. $\gamma > 1$, increasing hazard over time
- (c) Gamma: $Gamma(\lambda, \rho)$ using scale and shape parameters

$$
f(t) = \frac{\lambda^{\rho} t^{\rho - 1} e^{-\lambda t}}{\Gamma(\rho)}, \qquad t \ge 0
$$

There are no closed form for $S(t)$, $h(t)$, for example,

$$
h(t) = \frac{\lambda^{\rho} t^{\rho - 1} e^{-\lambda t}}{\Gamma(\rho) \{1 - \Gamma_{\lambda t}(\rho)\}}, \qquad t \ge 0
$$

where $\Gamma(\rho)$ is a gamma function and $\Gamma_{\lambda t}(\rho)$ is the imcomplete gamma function given by

$$
\Gamma_{\lambda t}(\rho) = \frac{1}{\Gamma(\rho)} \int_0^{\lambda t} u^{\rho - 1} e^{-u} du,
$$

which is the cumulative distribution function.

- i. when $\rho < 1$, hazard decreases
- ii. when $\rho = 1$, exponential distribution: $Exp(\lambda)$
- iii. when $\rho > 1$, hazard increases
- iv. If T_i $(i = 1, ..., k)$ are k independent random variables with $Gamma(\lambda, \rho_i)$ $(i = 1, ..., k)$, then $T = \sum_{i=1}^{k} T_i$ has $Gamma(\lambda, \sum_{i=1}^{k} \rho_i)$.
- (d) The log-logistic: $log logistic(\theta, \kappa)$

$$
f(t) = \frac{e^{\theta} \kappa t^{\kappa - 1}}{(1 + e^{\theta} t^{\kappa})^2}, \qquad t \ge 0
$$

$$
S(t) = [1 + e^{\theta} t^{\kappa}]^{-1}, \qquad t \ge 0
$$

$$
h(t) = \frac{e^{\theta} \kappa t^{\kappa - 1}}{1 + e^{\theta} t^{\kappa}}, \qquad t \ge 0
$$

- i. κ < 1, hazard decreases from $+\infty$
- ii. $\kappa = 1$, hazard decreases from e^{θ} to 0
- iii. $\kappa > 1$, hazard increases from 0 to a maximum, and then decreases to 0

 $log(T)$ has a logistic distribution, whose density function is similar to that of normal distribution. The pth percentile is

$$
t(p) = [pe^{-\theta}/(100 - p)]^{1/k},
$$

(e) Log-normal: $log-normal(\mu, \sigma^2)$

$$
f(t) = \frac{1}{\sigma \sqrt{(2\pi)}} t^{-1} exp{-\log t - \mu^2/2\sigma^2}, \qquad t \ge 0
$$

There are no closed form for $S(t)$, $h(t)$, hazard non-monotonic, increasing from 0 to a maximum, and then decreasing to 0. For example,

$$
S(t) = 1 - \Phi(\frac{\log t - \mu}{\sigma}) = \int_{-\infty}^{\frac{\log t - \mu}{\sigma}} \frac{1}{\sqrt{(2\pi)}} exp{-u^2/2} du,
$$

The log-normal model will tend to be similar to log-logistic model; the Weibull and Gamma distributions will generally lead to very similar results.

(f) Gompertz distribution: $Gompertz(\beta, \gamma)$

$$
f(t) = \beta e^{\gamma t} exp[\frac{\beta}{\gamma} (1 - e^{\gamma t})],
$$

where $\beta, \gamma > 0, t \geq 0$.

$$
S(t) = exp[\frac{\beta}{\gamma}(1 - e^{\gamma t})],
$$

what if $\gamma < 0$?(Cure rate, Ref.: Survival Analysis with Long-Term Survivors, Maller; Zhou, 1996)

$$
h(t) = \beta e^{\gamma t},
$$

- (g) Mixture (Maller, Zhou, 1996) and non-mixture (Tsodikov et al: JASA, 2003; 98: 1063-1078) cure models: See also section 5.16.
- (h) General exponential curve or Mitscherlich curve with hazard has following forms (Gompertz-Makeham law of mortality)

$$
h(t) = \theta - \beta e^{-\gamma t}, \qquad t \ge 0
$$

and

$$
h(t) = \theta + \beta e^{-\gamma t},
$$

where θ , β , $\gamma > 0$ (or < 0?). There are other constraints on the parameters.

The hazard of death is to increase or decrease with time in the short term, and then become constant.

- (i) Generalized gamma distribution and inverse Gaussian distribution (page 155): Ref: The Inverse Gaussian Distribution, Seshadri, 1999, Spinger.
- (j) the 'bathtub' hazard:

$$
h(t) = \alpha t + \frac{\beta}{1 + \gamma t},
$$

which decreases to a single minimum and increases thereafter.

3. Choose a distribution: graphic tools

- (a) Quantitle-Quantile Plot (QQ plot): without Censoring
	- i. Quantile/Percentile: t_q is the q^{th} percentile if $P(T < t_q) = q$.
	- ii. If a theoritical distribution approximates data reasonably well.
		- A. Theoretical quantitles (from distribution) should be comparable with emperical quantile (based on data).
		- B. Plot of theoritical quantitles versus empirical quantile is close to a straighline.
	- iii. If two samples of data follow the same distribution
		- A. Empirical quantiles of sampe 1 should be similar to the empirical quantile of sample 2.
		- B. Plot of quantiles from sample 1 vs quantiles of sample 2 is roughly a straightline.
	- iv. Splus Implementation
		- A. qqnorm(y): normal quantiles vs quantiles of sample y.
		- B. qqplot (x,y) : quantiles of sample x vs quantiles of sample y, $length(x) = length(y)$ is NOT required.
		- C. $plot(qdist(ppoints(y)), sort(y))$: quantiles of theoretical 'dist' vs quantiles of sample y.
		- D. 'qdist' can be one of 'qexp', 'qgamma', 'qlogis','qlnorm','qunif', 'qweibull', and many more.
		- E. 'ppoints': a sample of probability points corresponding to the sample y.
		- F. 'sort': re-arrange y based on ranking.
- v. Using formal tests to compare a sample with a theoretical distribution
	- A. Examples: Kolmogorov-Smirnov test, Chisq test, etc.
	- B. Warning: many common t-tests, Wilcoxon etc. are not appropriate because they test only difference in mean/median, not the distribution.
- vi. censoring cannot be dealt with by 'qqplot' (how to rank censored observations?)
- (b) Hazard and other plots
	- i. The estimates of hazard function mentioned in chapter 2 are very unstable, which depend heavily on time interval between two consecutive distinct failures/ time intervals chosen.
	- ii. plotting $\hat{h}(t_j)$ vs t_j : unstable because of substantial fluctuation. Instead, use cumulative hazard plot.
- (c) Cumulative Hazard Plot
	- i. Estimating H(t) by using $\hat{S}(t)$ (e.g. KM).
	- ii. Appropriate scale to plotting $H(t)$ vs t: determined by the analytical behavior of a distribution.
		- A. Exponential: $H(t) = \lambda t$, $log(S(t))$ linear in t.
		- B. Weibull: $log(H(t)) = log(-logS(t))$ linear in $log t$.
		- C. log-logistic: $log\left\{\frac{S(t)}{1-S(t)}\right\} = -\theta \kappa log t$. Illustration (Example 6.1):
		- D. log-normal: $\Phi^{-1}\lbrace 1 S(t)\rbrace = \frac{\log t \mu}{\sigma}$ σ
		- E. Not trivial for most of other distributions.
	- iii. Example 5.2: Time to discontinuation (IUD data)

Log of discontonuation time