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tently estimated, however, by the quadratic variation process:

[A A7)
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/0 H(s)d[M](s)
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/0 " iV (s) /T (5)ds, (2.15)

which is the Nelson—Aalen variance estimate given earlier (2.4), and justi-
fied at that point by an ad hoc Poisson argument.
Jﬁ, M@tlmate the integrated hazard g:@%@nw,
ve seen, is asymptotically equivalent to the Nelson—Aalen estimator
and sltghtly la.rger in finite samples. It ha§ a consistent variance estimator
given by the well-known Greenwood formula [37, pp. 50-51],

— A ¢ dN(s)
Vor - oglSen 01} = || S - AR
This is slightly larger than the Nelson—Aalen variance estimator in keeping
with the larger size of the cumulative hazard estimator. In finite samples,
however, the logarithm of the Kaplan-Meier is not a good estimate of the
hazard in the tails. In particular, if the last subject in the study dies, the
estimator is infinite.

The properties of the estimate then follow directly from the general mar-

tingale results, The Nelson—Aalen estimator is yniformly consistent [4 The-
orem IV.1.1]; for any ¢ <:

(2.16)

sup |A(s) — A(s)] = 0.
sel0.4

The variance estimator is also uniformly consistent:

sup | [ ndN(s)/T2(s) — / " Ms)/m(s)ds| 2> 0.
s€(0,i] Jo 0

Under an additional regularity condition that assures that the jumps are

becoming negligible [4, Condition B, Theorem IV.1.2], filfe martingalé cen-g

tral linit'theorem appliéstand

\/—{A(S) A(s)} = W(a(s)) on [0,7], (2.17)
where .
oftyes /0 A(s)/m(s)ds. (2.18)
2.8.2  Efficiency /

hS
Nonparametric methods a.r%less eﬂic;enj) than parametric methods, some-_

times substantially so. For purpos;;h comparison, Figure 2.5 shows the
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FIGURE 2.5: Comparison of confidence interval widths

half-widths of the Nelson—Aalen confidence intervals along with that for the
simplest parametric model, exponential failure time. The confidence inter-
val for the parametric estimate is based on the likelihood ratio test using
the approximation suggested in Cox and Oakes [37, p. 38]: let d = }_; di,
the number of failures. Then, 2dA/(}) is distributed approximately as chi-
squared on 2d degrees of freedom and a 100 x (1 — ¢) confidence interval
for the integrated hazard At is

ALCg1—a/2 <M< AC g /2
2d 2d
where cj , is the upper a point of the chi-squared distribution with p

degrees of freedom. Over much of the range, the confidence intervals for
the Nelson—Aalen are about 1.8 times as wide.

We can compute the asymptotic relative efficiency (ARE]) in closed form
for a simple case. Suppose T* and C*, thefirue survival and censoring
times, are distributed exponentially with parameters A and 7, respectively.
Then theBlEERed (i€ T = T* A C* is exponential with parameter \)\ +7,
and m(t) = e~(+* is the expected proportion of subjects still at tisk at
time ¢. Applying equations (2.17) and (2.18), the scaled Aalen estimate

\/'_ {Aa(t A(t)} has asymptotlc variance X =
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being at risk, 7 =7 (t) =exp[= (X4 9)t] the ARE becomess: l /
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The scaled parametric estimate, /n (Ap —A) = /r(h — A)t has asymptotic
variance t?/E[—£] = t2A(\ + 'y) where £(\) = 6;log(\) — AT} the log].l—k_éﬁ
M a single observation, ¢ and 7 are the first and second derivatives
wrt A, and E[—/[ is the Fisher (expected) information. The ARE is the
ratio of the asymptotic variances: \ VO/ EVO ~l)" \
= )
(A +y)%2

exp[(A+7)t] = 1" :Z\)S\vﬂ ,\)x /}yé&

This is identical to the ARE derived by Miller in his paper “What _price
Kaplan-Meier”, for comparing g the exponential and non-parametnc esti- */
mates [109, equation (7)].‘@emsidared as 4 function 6f the probability of/ *&

ARE =

,_5"
ARE = ”(llﬂf)_’

-

= Mw

a concave function attaining its maximum of 0.648 at m = 0.203; see Figure
(2.6).

The efficiency is not very impressive; but the poor showing of the non-
parametric estimator should not be a surprise. The asymptotic efficiency
relative to the exponential model effectively compares the variability in fit-
ted values between a one-parameter and a (# deaths)-parameter model.
The Nelson—Aalen estimator does better when compared to the fit from
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We: camsider two different- two- parame“
18 W ‘aﬂm Wand ghe Gomperta: X(t) =2
Qﬁﬁach refluces to the exponentlal for particular values of a. Usmg

t m-s;malkehhood expansion method

ARE(Gompertz) = ﬁ@ﬁexg?{l_’_w}
ARE(Weibull) = i@,{eX_P){l+ C_h:rgz(()\_l_wt)]z},

where ¢ denotes Euler’s constant 0.577215.... As with the exponential
model, these AREs are functions of the probablhty of being at risk and so
can be superimposed on Figure 2.6. The range over which efficiency < .5
has been substantially decreased, but still the ARE barely exceeds 60%
over the range of likely values. These efficiencies are comparablé to those of
some other widely used nonparametric estimators; for (noncensored) Gaus-
sian data, the median has ARE 2/m = 0.637 relative to the sample mean
[67], and the MAD and interquartile range both have ARE 0.735, relative
to the sample standard deviation [70, Chap. 5, Exhibit 5.7.3].

2.4 Tied data

So far, we have assumed that each event time corresponds to exactly one
event,

Eiaﬁ_they emst in nearly every v data set used in this book.
There are two conceptually different approaches to dealing with ties. The
first, which we call the grouped approach, views the presence of tied data

ecause of intermittent observation and/or rounded event times. The AML

as an artifact, of the imprecision of real world measurement. Ties happen
x%l

«3study had both; clinical assessment for remission occurred only at certain

imes and remission and censoring times are recorded to the nearest week.
The failure and censoring times of the generator data were rounded to the
nearest hundred hours.

If ties result from imprecision, then the obvious approach is to break the
tles randomly, reconstructmg, in some sense, what the data “would have

data accuracy is such that an event recorded as day 44 really preceded
an event at day 45, then the only issue is breaking ties within a day. The
computed résult for A(t) (i.e., cumulative hazard through the end of day t)
is invariant to the order in which the ties are broken, and can be written



