
 1 

Lecture Three: Standard Error of KM Estimate and Estimating  

                                 Hazard Function 

 

1. Standard Error and Confidence interval for )(ˆ tS  

 
We also need to know about how good it’s the (KM) estimate. A common way is to 

estimate the sample variation or standard error of the estimate )(ˆ tS .  

 

Use the derivation at page 22-23: Steps: 

 

 Take log  transformation of KM estimate 

 # of survivals, nj – dj, through the interval beginning at t(j) has  

 Binomial(nj, jp̂ ), where 
jp̂  = 1 – dj/nj 

 Obtain the variance of log
jp̂  by the delta-method: 

)var(}
)(

{)}(var{ 2 X
dX

Xdg
Xg  , 

 which is known as the Taylor series approximation to the variance of a function  

             of a random variable. 

 Standard error (S.E.): square-root of variance estimate. 

 

With the estimated standard error, a (1 - )100% confidence interval for )(ˆ tS  

at each time point t can be easily constructed, based on a typical normal 

approximation (meaning?). When we link the upper and lower confidence limits 

together along the time axis, we form a so-called confidence band. This can be 

done on different scales as implemented in Splus and SAS (PROC LIFETEST: 

conftype, confband options in SURVIVAL statement). 

 

 Original scale: S (t). 

o Confidence interval for )(ˆ
jtS  at  tj 

CI = )(ˆ
jtS   2/z *S.E. ( )(ˆ

jtS ) 

o Although S (t) should be in [0, 1], the lower and upper limit can be 

out of the range. A practical solution to this problem is to replace any 

limit that greater than 1 by 1, and any limit that is less than zero by 

0.0. 

 

 Log-scale: log S (t). 

o Confidence interval for log )(ˆ
jtS  

       CIlog = log )(ˆ
jtS   2/z *S.E. (log )(ˆ

jtS ) 

o Converting CIlog back to the original scale to have CI for )(ˆ
jtS  

CI = exp (CIlog) =? 
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o Where the lower bound is always  nonnegative, the upper bound may 

exceed 1 

 

 Log-log scale: log (-log )(ˆ
jtS ). 

 

o Obtain the standard error for log(-log )(ˆ
jtS ) by the delta-method 

o Confidence interval CIlog-log for log(-log )(ˆ
jtS ) by the normal 

approximation 

o Convert CIlog-log to have CI for )(ˆ
jtS  

 

CI = exp (-exp (CIlog-log)) 

 

o Lower limit >= 0 and upper limit <= 1 

o Appropriate with moderate to large sample size because of repeated 

use of the delta-method. 

 

             The Greenwood variance estimate is appropriate only when the expected risk set 

              size nj is fairly large at each time point t (j) because the use of the delta-method  

               requires large sample size.  As nj gets smaller with increasing time, the 

               Greenwood estimate becomes unstable at the tail. (Cut the tail out requested  

                by investigators, reasonable?) 

 

 In Splus, use option “conf.type” in “survfit()” to choose different methods 

 In SAS, use conftype option in the PROC LIFETEST statement. 

 

 Example: IUD  
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                 Splus code: 

                             iud.s<-function (){ 

                            tmpdf <- importData("../sdata/iud.sas7bdat") 

                            motif() 

                            par(mfrow=c(2,2)) 

                            iud.km1 <- survfit(Surv(survt, censor), conf.type="plain",  

                                          type="kaplan-meier", data=tmpdf) 

                            plot(iud.km1,xlab="Discontinuation time", 

                                       ylab="Estimated survival Function", xlim=c(0, 120), 

                                            ylim=c(0,1),mark.time=T, conf.int=T,   

                                              main=”Original scale”) 

                            iud.km2 <- survfit(Surv(survt, censor), conf.type="log",  

                                              type="kaplan-meier", data=tmpdf) 

                            plot(iud.km2,xlab="Discontinuation time", 

                                             ylab="Estimated survival Function", xlim=c(0, 120) ,    

                      ylim=c(0,1),mark.time=T, conf.int=T, main=”log scale”) 

                            iud.km3 <- survfit(Surv(survt, censor), conf.type="log-log", 

                                       type="kaplan-meier", data=tmpdf) 

                            plot(iud.km3,xlab="Discontinuation time", 

                                    ylab="Estimated survival Function", xlim=c(0, 120), 

                                    ylim=c(0,1),mark.time=T, xmax= 100, conf.int=T, 

                                    main=”log-log scale”) 

                       } 

 

2. Estimating the hazard function 

 

 Life-table estimate of the hazard function 

 

o Dividing the period of observation into a series of time intervals: 
'

jt  to '

1jt , j = 1, 2, …,m, with length j 

o 
jd  deaths, cj censored  in ( '

jt , '

1jt ] and nj at risk at the start of 

the j’th interval 

o Assume censored times occur uniformly (i.e. U(0, cj)) through 

the j’th interval, then average number of individual at risk is 

2/'

jjj cnn   

o Assuming the death rate is constant during the j’th interval 

o The average hazard of death per unit time can be estimated by  

 

jjj

j

dn

d
th

)2/(
)(

'

*


 , 

                                    for mjttt jj ,...,2,1,'

1

'   , where  jjj dn )2/( '   is the average 

                                     time survived in ( '

jt , '

1jt ]. 
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 Kaplan-Meier Type Estimate 

 

Let the observed survival times: t1, t2, … , tn and r ordered death times: 

t(1) < t(2) < … < t(r); nj at risk just before  t(j), dj deaths at the j’th death 

time 

o Assuming constant hazard between successive death times 

o The hazard can be estimated by 

 

jj

j

n

d
th


)(ˆ , 

                                 for 
)1()(  jj ttt , where 

)()1( jjj tt    

 

o No estimate for t > t(r) 

o Proof: The conditional death probability for )1(  jj tTt is 

jth )(ˆ , which is dj/nj 

 Kernel-smoothed estimate 

 

o Above estimates are rather irregular 

o Using smoothing techniques (ref: Smoothing Methods in Statistics,  

                        1996, Simonoff JS). 

o A weighted average of values of the estimated hazard )(ˆ th at death  

                        times in the neighborhood of t. 

 

 Estimating the cumulative hazard function 

 

o Use relation )(log)( tStH   and KM estimate of survivor 

function 





k

j j

jj

n

dn
tS

1

)(ˆ , for  

o Use Taylor series expansion of log(1 – x), and ignore higher-order 

terms when x is small 

o 



k

j j

j

n

d
tH

1

)(ˆ , which is called Nelson-Aalen estimate. 

3. Estimating the median, mean and percentiles of survival times 

 

 Median survival time: defined as smallest observed survival time for 

which the value of the estimated survival function is less than 0.5 

 In math term 

 

                  }5.0)(ˆ|min{)50(ˆ  ii tStt  

 

                        where ti is the observed survival time for the i’th individual, I = 1, …, n 
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 What if 5.0)(ˆ tS  for any t > 0? 

 Mean:  
 
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 p’th percentile: Defined to be the value t(p), such that F{t(p)} = p/100. 

In terms of survival, t(p) is such that S{t(p)} = 1 – (p/100) 

 The p’th percentile of the estimated survival: 

 

)}100/(1)(ˆ|min{)(ˆ ptStpt ii 
 

 Example: Medians of two treatment groups of prostatic cancer patients 

(Table 1.4, p10). Use the plot from lecture one 

 

 Confidence intervals for the median and percentiles by the delta-

method. 


