PAGE  
5

Lecture Three: Standard Error of KM Estimate and Estimating 

                                 Hazard Function

1. Standard Error and Confidence interval for 
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We also need to know about how good it’s the (KM) estimate. A common way is to estimate the sample variation or standard error of the estimate
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Use the derivation at page 22-23: Steps:

· Take log  transformation of KM estimate

· # of survivals, nj – dj, through the interval beginning at t(j) has 
 Binomial(nj, 
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· Obtain the variance of log
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which is known as the Taylor series approximation to the variance of a function 

             of a random variable.

· Standard error (S.E.): square-root of variance estimate.

With the estimated standard error, a (1 - ()100% confidence interval for 
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 at each time point t can be easily constructed, based on a typical normal approximation (meaning?). When we link the upper and lower confidence limits together along the time axis, we form a so-called confidence band. This can be done on different scales as implemented in Splus and SAS (PROC LIFETEST: conftype, confband options in SURVIVAL statement).

· Original scale: S (t).
· Confidence interval for 
[image: image8.wmf])

(

ˆ

j

t

S

 at  tj
CI = 
[image: image9.wmf])

(

ˆ

j

t

S

 ( 
[image: image10.wmf]2

/

a

z

*S.E. (
[image: image11.wmf])

(

ˆ

j

t

S

)

· Although S (t) should be in [0, 1], the lower and upper limit can be out of the range. A practical solution to this problem is to replace any limit that greater than 1 by 1, and any limit that is less than zero by 0.0.
· Log-scale: log S (t).
· Confidence interval for log
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       CIlog = log
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· Converting CIlog back to the original scale to have CI for 
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CI = exp (CIlog) =?
· Where the lower bound is always  nonnegative, the upper bound may exceed 1

· Log-log scale: log (-log
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· Obtain the standard error for log(-log
[image: image18.wmf])

(

ˆ

j

t

S

) by the delta-method

· Confidence interval CIlog-log for log(-log
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· Convert CIlog-log to have CI for 
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CI = exp (-exp (CIlog-log))
· Lower limit >= 0 and upper limit <= 1
· Appropriate with moderate to large sample size because of repeated use of the delta-method.

             The Greenwood variance estimate is appropriate only when the expected risk set

              size nj is fairly large at each time point t (j) because the use of the delta-method 

               requires large sample size.  As nj gets smaller with increasing time, the

               Greenwood estimate becomes unstable at the tail. (Cut the tail out requested 

                by investigators, reasonable?)

· In Splus, use option “conf.type” in “survfit()” to choose different methods

· In SAS, use conftype option in the PROC LIFETEST statement.

· Example: IUD 
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                 Splus code:
                             iud.s<-function (){

                            tmpdf <- importData("../sdata/iud.sas7bdat")

                            motif()

                            par(mfrow=c(2,2))

                            iud.km1 <- survfit(Surv(survt, censor), conf.type="plain", 

                                          type="kaplan-meier", data=tmpdf)

                            plot(iud.km1,xlab="Discontinuation time",

                                       ylab="Estimated survival Function", xlim=c(0, 120),

                                            ylim=c(0,1),mark.time=T, conf.int=T,  

                                              main=”Original scale”)

                            iud.km2 <- survfit(Surv(survt, censor), conf.type="log", 

                                              type="kaplan-meier", data=tmpdf)

                            plot(iud.km2,xlab="Discontinuation time",

                                             ylab="Estimated survival Function", xlim=c(0, 120) ,   

               

     ylim=c(0,1),mark.time=T, conf.int=T, main=”log scale”)

                            iud.km3 <- survfit(Surv(survt, censor), conf.type="log-log",

                                       type="kaplan-meier", data=tmpdf)

                            plot(iud.km3,xlab="Discontinuation time",

                                    ylab="Estimated survival Function", xlim=c(0, 120),

                                    ylim=c(0,1),mark.time=T, xmax= 100, conf.int=T,
                                    main=”log-log scale”)

                       }

2. Estimating the hazard function

· Life-table estimate of the hazard function

· Dividing the period of observation into a series of time intervals: 
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· 
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 deaths, cj censored  in (
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· Assume censored times occur uniformly (i.e. U(0, cj)) through the j’th interval, then average number of individual at risk is 
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· Assuming the death rate is constant during the j’th interval

· The average hazard of death per unit time can be estimated by 
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                                     time survived in (
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· Kaplan-Meier Type Estimate

Let the observed survival times: t1, t2, … , tn and r ordered death times: t(1) < t(2) < … < t(r); nj at risk just before  t(j), dj deaths at the j’th death time

· Assuming constant hazard between successive death times

· The hazard can be estimated by
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· No estimate for t > t(r)
· Proof: The conditional death probability for 
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· Kernel-smoothed estimate

· Above estimates are rather irregular

· Using smoothing techniques (ref: Smoothing Methods in Statistics, 
                        1996, Simonoff JS).

· A weighted average of values of the estimated hazard 
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· Estimating the cumulative hazard function

· Use relation 
[image: image39.wmf])

(

log

)

(

t

S

t

H

-

=

 and KM estimate of survivor function 
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· Use Taylor series expansion of log(1 – x), and ignore higher-order terms when x is small

· 
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, which is called Nelson-Aalen estimate.
3. Estimating the median, mean and percentiles of survival times

· Median survival time: defined as smallest observed survival time for which the value of the estimated survival function is less than 0.5

· In math term
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                        where ti is the observed survival time for the i’th individual, I = 1, …, n

· What if 
[image: image43.wmf]5

.

0

)

(

ˆ

>

t

S

 for any t > 0?

· Mean: 
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· p’th percentile: Defined to be the value t(p), such that F{t(p)} = p/100. In terms of survival, t(p) is such that S{t(p)} = 1 – (p/100)
· The p’th percentile of the estimated survival:
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· Example: Medians of two treatment groups of prostatic cancer patients (Table 1.4, p10). Use the plot from lecture one
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· Confidence intervals for the median and percentiles by the delta-method.
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