Lecture seven: Cox Proportional Hazards Models (II)

- 1. Maximum Likelihood Estimation (MLE)
 - (a) MLE
 - i. The likelihood function

Let t_1, \ldots, t_n be a simple random sample (iid) from pdf $f(t, \beta)$, the likelihood function is

$$L(\beta) = \prod_{i=1}^{n} f(t_i, \beta)$$

ii. The score equations

$$u(\hat{\beta}_j) \equiv \frac{d \log L(\beta)}{d\beta_i}|_{\hat{\beta}} = 0$$

iii. Hessian matrix $H(\beta)$: The (j,k)th element of $H(\hat{\beta})$ is the second derivative of the log-likelihood function:

$$\frac{\partial^2 log L(\hat{\beta})}{\partial \beta_i \partial \beta_k},$$

iv. The matrices

The observed information matrix:

$$I(\hat{\beta}) = -H(\hat{\beta})$$

The expected information matrix:

$$EI(\hat{\beta}) \equiv E(I(\hat{\beta}))$$

v. MLE $\hat{\beta}$ and $var(\hat{\beta})$

Under some regular conditions, the asymptotic variance of MLE $\hat{\beta}$ is $EI^{-1}(\hat{\beta})$, but usually use $I^{-1}(\hat{\beta})$ instead.

vi. The tests

The likelihood ratio:

$$2\{\log L(\hat{\beta}) - \log L(0)\},\$$

The Wald test:

$$\hat{\beta}'I(\hat{\beta})\hat{\beta},$$

The score test:

$$u'(0)I(0)^{-1}u(0),$$

Each of the three statistics has a $\chi^2(p)$ distribution under the null hypothesis that $\beta = 0$.

vii. Example: Exponential distribution: $Exp(\lambda)$

- 2. MLE and MPLE in survival setting
 - (a) Parametric model (see section 5.3.1 for more rigorous derivation) When construct the likelihood function, we have to take censoring information (partially observed survival times) into account. The likelihood function

$$L(\beta) = \prod_{i=1}^{r} f(t_{(i)}) \prod_{i=1}^{n-r} S(t_{j}^{*}) = \prod_{i=1}^{n} f^{\delta_{i}}(t_{i}) S^{1-\delta_{i}}(t_{i})$$

- (b) Semi-parametric model (Cox model): partial likelihood (PL)
 - i. Assume no ties at each death time (only one dies at each death time)

$$PL(\beta) = \prod_{j=1}^{r} \frac{exp(\beta'x_{(j)})}{\sum_{l \in R(t_{(j)})} exp(\beta'x_{l})},$$

where $R(t_{(j)})$ is called the *risk set*: individuals who are alive and uncensored at a time just prior $t_{(j)}$; Or

$$PL(\beta) = \prod_{i=1}^{n} \left[\frac{exp(\beta'x_i)}{\sum_{l \in R(t_i)} exp(\beta'x_l)} \right]^{\delta_i}.$$

The log-likelihood function is given by

$$logPL(\beta) = \sum_{i=1}^{n} \delta_i \{ \beta' x_i - log \sum_{l \in R(t_i)} exp(\beta' x_l) \}.$$

ii. Illustration

Follow the arguments at section 3.3.1: Consider following conditional probability (only one subject failed among $R(t_{(j)})$ at time $t_{(j)}$)

 $P[individual \ with \ variables \ x_{(j)} \ dies \ at \ t_{(j)} \ | \ one \ death \ at \ t_{(j)}], \$

For more rigorous mathematical reasoning, see the sections in **Fleming** and **Harrington**'s book (page 11 and page 139).

- iii. treatment of ties: see section 3.3.2. In PROC PHREG, there are 4 ways to handle ties: Breslow, Exact, Discrete and Efron.
- (c) Notes for the Cox models:
 - i. MLE is unavailable since $h_0(t)$ is unspecified.
 - ii. PL depends on covariates, and the ranks of survival times, not on the actual values observed.
 - iii. Under certain regularity conditions, the MPLE is asymptotically unbiased, consistent and normal.
 - iv. The efficiency of MPLE is almost comparable with that of MLE as if the baseline $h_0(t)$ were specified.

3. Newton-Raphson method

- (a) Only a few of score equations have closed form solution (true for many other type of equations).
- (b) The Newton-Raphson procedure is one of numeric methods. The iterative procedure is

$$\hat{\beta}_{s+1} = \hat{\beta}_s + I^{-1}(\hat{\beta}_s)u(\hat{\beta}_s),$$

for s = 0, 1, 2,

- (c) There are several convergence criteria for this procedure.
- (d) Illustration: For one parameter case, apply Taylor series to the following score equation

$$u(\beta) \equiv \frac{\partial log \, PL(\beta)}{\partial \beta} = 0$$

4. Delta method: General case (more than one parameters).

- 5. Confidence intervals and hypothesis tests for the β 's.
 - (a) hazard ratios

$$\{exp(\hat{\beta})\}^2 var(\hat{\beta}),$$

by Delta method.

- (b) Example 3.1: Breast cancer study.
 - i. SAS output

Analysis of Maximum Likelihood Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	Chi-Square	Pr > ChiSq
GROUP	1	0.90801	0.50092	3.2858	0.0699

Analysis of Maximum Likelihood Estimates

	Hazard	95% Hazard Ratio	
Variable	Ratio	Confidence Limit	S
GROUP	2.479	0.929 6.6	18

ii. SAS program: ex31.sas

```
options ls =80 nodate;
libname fu '../../sdata';
data work;
```

set fu.hpa;

proc phreg;

model survt*censor(0)=group /covb rl ties=BRESLOW;

run;

(c) Example 3.2: multiple myeloma study

i. Description of the study (Table 1.3 at p9)

AGE: age of the patient, SEX: sex of the patient

BUN: Blood Urea Nitrogen, CA: serum CAlcium

HB: Serum HaemogloBin, PC: percentage of Plasma Cells

BJ: Bence-Jones protein (0: absent, 1: present)

ii. Rescale covariates: interpretation and effect

iii. SAS output

Analysis of Maximum Likelihood Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	Chi-Square	Pr > ChiSq
AGE	1	-0.01936	0.02792	0.4806	0.4882
SEX	1	-0.25090	0.40229	0.3890	0.5328
BUN	1	0.02083	0.00593	12.3397	0.0004
CA	1	0.01312	0.13244	0.0098	0.9211
HB	1	-0.13524	0.06889	3.8537	0.0496
PC	1	-0.00159	0.00658	0.0587	0.8085
BJ	1	-0.64044	0.42669	2.2529	0.1334

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Variable	Hazard Ratio	95% Hazard Confidence	
AGE	0.981	0.929	1.036
SEX	0.778	0.354	1.712
BUN	1.021	1.009	1.033
CA	1.013	0.782	1.314
HB	0.874	0.763	1.000
PC	0.998	0.986	1.011
BJ	0.527	0.228	1.216

```
iv. SAS program: ex32.sas
  options ls=80 nodate;
  libname fu '../../sdata';
  data work;
        set fu.myeloma;
  /* in Table 1.3, 1 for male and 2 for female */
        if sex=1 then sex=0; else sex=1;
  proc phreg;
        model survt*censor(0)= age sex bun ca hb pc bj /covb rl;
  run;
v. Throw all covariates into the model? Model building strate-
  gies (next lecture).
```