
Lecture seven: Cox Proportional Hazards
Models (II)

1. Maximum Likelihood Estimation (MLE)

(a) MLE

i. The likelihood function

Let t1, . . . , tn be a simple random sample (iid) from pdf f(t, β),
the likelihood function is

L(β) =
n∏

i=1

f(ti, β)

ii. The score equations

u(β̂j) ≡
d log L(β)

dβj

|β̂ = 0

iii. Hessian matrix H(β): The (j, k)th element of H(β̂) is the
second derivative of the log-likelihood function:

∂2log L(β̂)

∂βj∂βk

,

iv. The matrices

The observed information matrix:

I(β̂) = −H(β̂)

The expected information matrix:

EI(β̂) ≡ E(I(β̂))

v. MLE β̂ and var(β̂)

Under some regular conditions, the asymptotic variance of
MLE β̂ is EI−1(β̂), but usually use I−1(β̂) instead.
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vi. The tests

The likelihood ratio:

2{log L(β̂)− log L(0)},

The Wald test:

β̂ ′I(β̂)β̂,

The score test:

u′(0)I(0)−1u(0),

Each of the three statistics has a χ2(p) distribution under the
null hypothesis that β = 0.

vii. Example: Exponential distribution: Exp(λ)

2. MLE and MPLE in survival setting

(a) Parametric model (see section 5.3.1 for more rigorous derivation)

When construct the likelihood function, we have to take censoring
information (partially observed survival times) into account. The
likelihood function

L(β) =
r∏

i=1

f(t(i))
n−r∏

j=1

S(t∗j) =
n∏

i=1

f δi(ti)S
1−δi(ti)

(b) Semi-parametric model (Cox model): partial likelihood (PL)

i. Assume no ties at each death time (only one dies at each
death time)

PL(β) =
r∏

j=1

exp(β ′x(j))∑
l∈R(t(j))

exp(β ′xl)
,

where R(t(j)) is called the risk set: individuals who are alive
and uncensored at a time just prior t(j); Or

PL(β) =
n∏

i=1

[
exp(β ′xi)∑

l∈R(ti) exp(β
′xl)

]δi .

The log-likelihood function is given by

logPL(β) =
n∑

i=1

δi{β
′xi − log

∑

l∈R(ti)

exp(β ′xl)}.
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ii. Illustration

Follow the arguments at section 3.3.1: Consider following con-
ditional probability (only one subject failed among R(t(j)) at
time t(j))

P [individual with variables x(j) dies at t(j) | one death at t(j)], ....

For more rigorous mathematical reasoning, see the sections in
Fleming and Harrington’s book (page 11 and page 139).

iii. treatment of ties: see section 3.3.2. In PROC PHREG, there
are 4 ways to handle ties: Breslow, Exact, Discrete and Efron.

(c) Notes for the Cox models:

i. MLE is unavailable since h0(t) is unspecified.

ii. PL depends on covariates, and the ranks of survival times,
not on the actual values observed.

iii. Under certain regularity conditions, the MPLE is asymptoti-
cally unbiased, consistent and normal.

iv. The efficiency of MPLE is almost comparable with that of
MLE as if the baseline h0(t) were specified.

3. Newton-Raphson method

(a) Only a few of score equations have closed form solution (true for
many other type of equations).

(b) The Newton-Raphson procedure is one of numeric methods. The
iterative procedure is

β̂s+1 = β̂s + I−1(β̂s)u(β̂s),

for s = 0, 1, 2, ....

(c) There are several convergence criteria for this procedure.

(d) Illustration: For one parameter case, apply Taylor series to the
following score equation

u(β) ≡
∂log PL(β)

∂β
= 0

4. Delta method: General case (more than one parameters).
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5. Confidence intervals and hypothesis tests for the β’s.

(a) hazard ratios

{exp(β̂)}2var(β̂),

by Delta method.

(b) Example 3.1: Breast cancer study.

i. SAS output

Analysis of Maximum Likelihood Estimates

Parameter Standard

Variable DF Estimate Error Chi-Square Pr > ChiSq

GROUP 1 0.90801 0.50092 3.2858 0.0699

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio

Variable Ratio Confidence Limits

GROUP 2.479 0.929 6.618

ii. SAS program: ex31.sas

options ls =80 nodate;

libname fu ’../../sdata’;

data work;

set fu.hpa;

proc phreg;

model survt*censor(0)=group /covb rl ties=BRESLOW;

run;
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(c) Example 3.2: multiple myeloma study

i. Description of the study (Table 1.3 at p9)

AGE: age of the patient, SEX: sex of the patient

BUN: Blood Urea Nitrogen, CA: serum CAlcium

HB: Serum HaemogloBin, PC: percentage of Plasma Cells

BJ: Bence-Jones protein (0: absent, 1: present)

ii. Rescale covariates: interpretation and effect

iii. SAS output

Analysis of Maximum Likelihood Estimates

Parameter Standard

Variable DF Estimate Error Chi-Square Pr > ChiSq

AGE 1 -0.01936 0.02792 0.4806 0.4882

SEX 1 -0.25090 0.40229 0.3890 0.5328

BUN 1 0.02083 0.00593 12.3397 0.0004

CA 1 0.01312 0.13244 0.0098 0.9211

HB 1 -0.13524 0.06889 3.8537 0.0496

PC 1 -0.00159 0.00658 0.0587 0.8085

BJ 1 -0.64044 0.42669 2.2529 0.1334

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio

Variable Ratio Confidence Limits

AGE 0.981 0.929 1.036

SEX 0.778 0.354 1.712

BUN 1.021 1.009 1.033

CA 1.013 0.782 1.314

HB 0.874 0.763 1.000

PC 0.998 0.986 1.011

BJ 0.527 0.228 1.216
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iv. SAS program: ex32.sas

options ls=80 nodate;

libname fu ’../../sdata’;

data work;

set fu.myeloma;

/* in Table 1.3, 1 for male and 2 for female */

if sex=1 then sex=0; else sex=1;

proc phreg;

model survt*censor(0)= age sex bun ca hb pc bj /covb rl;

run;

v. Throw all covariates into the model? Model building strate-
gies (next lecture).
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